
Measurement 199 (2022) 111569

Available online 6 July 2022
0263-2241/© 2022 Elsevier Ltd. All rights reserved.

Geometrical deviation modeling and monitoring of 3D surface based on 
multi-output Gaussian process 

Chen Zhao a, Jun Lv b, Shichang Du a,* 

a Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China 
b Faculty of Economics and Management, East China Normal University, Shanghai, China   

A R T I C L E  I N F O   

Keywords: 
Three-dimensional surface 
Geometrical deviation 
Spherical mapping 
Multi-output Gaussian process 

A B S T R A C T   

Geometrical deviation is an important factor in determining the quality of a three-dimensional (3D) Surface. For 
3D surfaces with complex shapes, the high-definition measurement (HDM) technology can provide detailed 
information on surface topography, which inspired new challenges in characterizing, modeling, and monitoring 
geometrical deviations. This paper proposes a spherical multi-output Gaussian process (S-MOGP) method to 
model and monitor 3D surfaces. Firstly, the surface in the 3D coordinate system is mapped to the spherical 2D 
parameter domain. Secondly, a state equation based on the multi-output Gaussian process is established to model 
the 3D surface. Finally, statistics are calculated and control charts are presented to monitor the geometrical 
deviation. The results of simulations and a case study show that the proposed method can effectively model 3D 
surfaces and monitor the geometrical deviations.   

1. Introduction 

Geometrical deviation, which refers to the variation of a measured 
element relative to its ideal element, is an important factor affecting the 
quality and accuracy of parts, such as straightness, flatness, circularity 
and cylindricity. With the improvement of processing and measurement 
technology, the processing quality of three-dimensional (3D) surfaces 
has become an important research topic. Geometrical deviations are 
important control objects of 3D surfaces and particularly impact the 
sealing, reliability, and life of products [1,2]. 

To evaluate the processing quality of 3D surfaces, measurement data 
must first be obtained. Currently, the commonly used method is the 
section curve method based on three-coordinate surface measurements 
[3]. However, this method has low measurement efficiency and the 
limited section curve cannot fully characterize the processing quality of 
the entire surface, resulting in the missed detection of local areas. With 
the advancement of non-contact measurement technology, high- 
definition measurement (HDM) technology can collect millions of data 
points that can entirely reflect the geometry information of manufac-
tured surfaces. Therefore, inferring, reconstructing, and monitoring 3D 
surfaces from large-scale point cloud measurements has become novel 
research. 

In many applications, assessing the quality of a process or product is 

characterized by a functional relationship between response and 
explanatory variables. The stability of these relationships over time is 
monitored and viewed through statistical process control (SPC). 
Woodall [4] summarized these methods as profile monitoring. Early 
profile monitoring research began with a simple linear regression model. 
To represent more complicated shapes, Kazemzadeh et al. [5] and Zou 
et al. [6] proposed polynomial and multiple regression models. Colo-
simo et al. [7] explored a spatial autoregressive regression (SARX) 
model to study circular profiles. Zhao et al. [8] extend the model to a 
cylindrical surface. These monitoring efforts can be extended to the 
quality of multiple surface characteristics, such as roundness, flatness, 
and cylindricity. 

Most profile monitoring research has been focused on the case where 
the profile is two-dimensional (2D) and can be represented by a 
regression model. Wells et al. [9] suggested that monitoring efforts can 
be extended to 3D space with the aid of point cloud datasets. However, 
due to the arbitrariness of 3D surfaces, profiles cannot simply be rep-
resented by a specific equation. Therefore, compared with evaluation 
methods for 3D surface textures, the research on the geometrical devi-
ation of 3D surfaces is limited [10]. 

The existing modeling and monitoring methods for 3D surfaces can 
be divided into three types: deviation method, feature extraction 
method, and parametric surface method, as shown in Fig. 1. 
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(i) Deviation method. This method evaluates the 3D surface error by 
calculating the deviation between the measured value and the 
nominal surface. To evaluate the deviation, it is necessary to 
convert the measured surface to an accurate position relative to 
the design surface for surface matching. This process usually uses 
the least square method or the minimum area method to obtain 
the rigid body conversion matrix required for matching [11]. 
Zang and Qiu [12,13] calculated the translation and rotation 
matrix of the measured value relative to the nominal point cloud 
to monitor the surface quality of 3D printing. This method can be 
applied to 3D surface with regular and sparse measurement 
points. Stankus and Castillo-Villar [14] divided the point cloud 
into regions of interest (ROIs) and calculated the mean deviation 
for each ROI. Mehrad et al. [15] and Wells et al. [9] used B-spline 
to reconstruct the 3D surface, and the geometric deviations of the 
surface are reflected by the position of the spline control points. 
Deviation methods need to achieve the best matching state be-
tween the measurements and the theoretical surface. The devia-
tion from the measurements to the ideal surface depends on the 
registration accuracy. This calculation is applicable to a known 
CAD model surface or a series of theoretical data points.  

(ii) Feature extraction method. In some cases, the quality of surface 
can be described by relevant macro or micro-geometrical de-
scriptors, such as length, high, roughness, and normal vector 
[16]. However, these features are highly sensitive to local defects 
and cannot qualitatively and quantitatively represent the contour 
change of the measurement surface relative to the theoretical 
surface. In response to this problem, Kase et al. [17] proposed a 
local and global evaluation method for the geometric deviation of 
3D surface. The local evaluation method calculates the principal 
curvature change between a CAD model and an actual surface. 
The overall evaluation method uses aggregate normal vectors to 
characterize various parts of the surface. Wang and Tsung [18] 
and Wells et al. [19] used the quantile–quantile (Q-Q) plot 
method to monitor 3D surfaces. The Q-Q plot converts high- 
dimensional data into a series of linear profiles to determine 
whether two sets of data come from the same distribution. Osada 
et al. [20] and Laga et al. [21] used distribution histograms to 
represent the shape characteristics of 3D surfaces. However, by 
converting point clouds into distribution maps, the information 
about local changes in the complex-shaped 3D surface will be 
lost. Huang et al. [22] divided a 3D surface into a series of plane 
sub-regions by surface segmentation and evaluated the surface 
quality by extracting the normal vector and wavelet packet en-
tropy of the sub-regions. Taken overall, the feature extraction 
method cannot specifically reflect the surface shape, so it is 
difficult to fully characterize the geometric deviation.  

(iii) Parametric surface method. This method establishes a regression 
model to model the shape of 3D surface. Colosimo et al. [23] 
modeled a cylindrical surface through Gaussian process (GP) and 
monitored the surface quality by the deviation value of check-
points. Zhao et al. [24] used the height value as the response 
value of the abscissa and ordinate for the 3D surface and used 

Gaussian process regression (GPR) to model the 3D surface. 
Parametric surface method establishes a regression model for 
each measuring surface and the geometrical deviation of 3D 
surface can be monitored through model parameters. The 
advantage of surface parameterization is that it avoids the precise 
registration of surfaces, fully reflects the information of the sur-
face shape, and can provide a valuable reconstruction method for 
reverse engineering. Most current parametric methods regard 
surface data as a special profile with one response variable and 
two explanatory variables. However, this assumption is limited 
and does not conform to the three degrees of freedom in the 
actual measurements. 

To overcome the limitations of parametric models, Castillo et al. [25] 
used manifold learning to map 3D surfaces into 2D space, and proposed 
a Geodesic Gaussian process (GGP) method to model the relationship 
between the mapped surfaces and the actual surfaces. This method re-
constructs a underlying surface via 2D manifold learning, which can 
reflect the distance correlation between two points on the surface more 
realistically. A similar approach is the Gaussian process latent variable 
model (GPLVM) proposed by Lawrence [26]. GPLVM introduced an 
additional set of latent variables and described the descriptive infor-
mation through a nonlinear dimension reduction model. The key idea of 
these approaches are that high-dimensional data may really lie on the 
low-dimensional nonlinear manifold that one wishes to model [27]. 

Existing dimensionality reduction methods are dedicated to reducing 
high-dimensional data to low-dimensional space. For the 3D surface, 
commonly used dimension reduction methods such as GPLVM, Locally 
Linear Embedding (LLE), isometric mapping, etc. are all plane param-
eterization methods, and the main defect is that they cannot be directly 
implemented on closed surface models. 

For manufacturing surfaces, geometric models are often described by 
closed, genus-0 surfaces, i.e., deformed spheres. For such models, the 
sphere is the most natural parametrization domain. Therefore, for the 
closed surfaces, the sphere can be regarded as the underlying surface 
and the spherical mapping is considered to reduce the dimension of 
three-dimensional surface, so that the points on the low-dimensional 
space have a reasonable and uniform structure, and an effective map-
ping result can be formed for closed surfaces. 

Furthermore, according to Sun et al. [28], the data obtained from the 
machined surface by non-contact measurement is Gaussian distribution 
and has a strong spatial correlation. Considering this spatial correlation, 
the relationship between latent spatial data and the real surface can be 
modeled by Gaussian process. 

The aim of this study is to explore a regression model that can be 
applied to closed surfaces. Based on spherical mapping and multi-output 
Gaussian process (MOGP), a spherical multi-output Gaussian process (S- 
MOGP) method is proposed to model the 3D surface. Meanwhile, 
considering the large-scale structure of point cloud, the compactly 
supported covariance matrix function is constructed to reduce compu-
tational complexity. Moreover, the geometrical deviation is monitored 
by the deviation between the measured surface and the predicted value. 

The advantage of the proposed method is that: (i) the model of 3D 

Fig. 1. Schematic diagram of geometric deviations evaluation of three methods.  
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surface is established through spherical mapping, and the angle distance 
is used instead of Euclidean distance and Geodesic distance, which is 
suitable for closed and non-expandable surfaces. (ii) A regression model 
is established based on MOGP to fit the 3D surface shape and the x, y, 
and z directions are comprehensively modeled, considering the spatial 
correlation of measurement points. (iii) This method can be used for 
modeling and monitoring point clouds with large-scale datasets. 

The remaining part of this work is organized as follows. Section 2 
reviews related prior work on surface parameterization and MOGP. 
Section 3 describes the proposed method. A simulation and a real case 
study are shown in Section 4 and Section 5, respectively. Section 6 
concludes the paper. 

2. Related prior work 

2.1. Spherical mapping 

Surface parameterization creates a one-to-one mapping from a sur-
face to a certain parameter domain, i.e., mapping from one surface to 
another. The parameter surface is defined by a vector-valued parame-
terized function ϕ: Ω→S, which maps the surface Ω⊂R3 to the 2D 
parameter domain S⊂R2. 

Mapping from a surface to the parameter domain requires mini-
mizing certain types of distortion. The length distortion, angle distortion 
and area distortion are the most common type of distortions, corre-
sponding to Isometric map, Conformal map and Equiareal map methods. 
In practice, surface parameterization considers the topology of the 
generated data, aims to minimize a certain type of distortion or a 
combination of different distortions [29]. 

A 3D geometric model can usually be represented by a deformed 
sphere; therefore, a sphere is the most natural parameterized domain of 
3D surfaces [31]. Given a surface M, the spherical mapping is specified 
by assigning each vertex a parametrization to form a continuous 
reversible mapping from the surface to the sphere ϕ: M → S. The para-
metric method of the spherical surface is invariant to translation, rota-
tion, and scaling, and it is suitable for describing point clouds [32]. 

The point cloud data obtained by the measurement is stored in the 
Cartesian coordinate system of 3D space. Each point is represented by 
three coordinate values (x, y, z). When the measurement coordinate 
system is inconsistent, the measured object should be aligned by rotation 
and translation (refer to the PCA-based coarse registration used by Yao 
et al. [33]). In the spherical coordinate system, each point is represented 
by a pair of radian values (u, v), where elevation u ∈ [ − π/2, π/2] and 
azimuth v ∈ [ − π,π]. The spherical coordinate of (x, y, z) is 

r(u, v) = (Rcosucosv, Rcosusinv, Rsinu) (1) 

Therefore, the value of (x, y, z) in a 3D surface can be represented by 
two parameters (u,v). 

For spherical surfaces, first, perform spherical fitting to find the 
approximate center of the sphere, and then move the center of the 
sphere to the origin of the coordinate system. Fig. 2 is a schematic di-
agram of spherical mapping. 

For the spherical parameterization of complex surfaces, many 
scholars have proposed different methods to parameterize the 3D sur-
face onto the sphere. This paper focuses on the one-to-one correspon-
dence between the points on the original surface and the sphere 
parameter domain, rather than equal area or equal arc length mapping. 
Therefore, the conformal method is used to parameterize the surface of 
the sphere. 

Based on the conformal parameterization method, Shen et al. [29] 
and Choi et al. [34] performed the spherical mapping by solving a series 
of Laplace equations. The specific steps of spherical parameterization 
are given in Appendix A. 

2.2. Gaussian process regression 

GP is a random process composed of an infinite number of random 
variables that obey the Gaussian distribution defined in a continuous 
domain. GPR is a non-parametric model that uses GP priori to perform 
regression analysis on data. In function-space view, the idea of GPR is to 
find a function set from countless functions which meets the test data. 
According to the prior information, the distribution of the function set is 
calculated through the properties of Bayesian rule and Gaussian distri-
bution. The distribution of the set is used to predict the subsequent data. 

Given a paired dataset of N observations: D = {(xn,yn)|n = 1,⋯,N}, 
x and y are input and output vectors. In GPR, y = f(x) + ε, ε N(0,σn

2), 
where σn

2 is the noise variance. f(x) is the latent function which implies 
that any finite subset of latent variables has a multivariate Gaussian 
distribution, denoted by 

f (x)̃ GP(m(x), k(x, x’) ) (2) 

where m(x) is mean function, which is usually taken as zero without 
loss of generality. k(x, x’) is the covariance function. 

In training observations 
{
xi, yi

}n
i=1, the input data is x =

{x1,⋯, xn}
T
∈ R1×n, and the output data is y. The joint prior distribution 

of the test points x* and the predictive targets f * is 
[

y
f *

]
̃ N

(

0,

[
K(X,X) + σ2

nI K(X,X*)

K(X*,X) K(X*,X*)

])

(3) 

where K(X,X) is the covariance matrix with the element Kij = k(xi,

xj). X* is the matrix of test inputs, and X is the matrix of the training 
inputs. 

Each element of the covariance matrix is the correlation measure of 
the corresponding two x values. Covariance matrix is the symmetric and 
positive semi-definite (PSD) matrix and can be calculated by the kernel 
function. 

After observing the training sample, the posterior distribution of the 
test output function is 

f *|X, y,X*̃ N(f *, cov(f *)) (4) 

where 

f * = K(X*,X)
[
K(X,X) + σn

2I
]− 1y (5) 

Fig. 2. Spherical domain.  
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cov(f *) = K(X*,X*) − K(X*,X)
[
K(X,X) + σn

2I
]− 1K(X,X*) (6) 

For multivariate GP, the above methods are still valid. The difference 
is that the kernel function in the multivariate GP represents the corre-
lation of the two vectors. 

The key to the GP model is the covariance function (kernel function), 
which directly determines the covariance between the function values. 
The GP corresponding to different covariance functions have different 
regression effects, but they all need to satisfy the semi-definite form. 
Commonly used kernel functions include Gaussian kernel function, 
Matern kernel, square exponential kernel function, periodic kernel 
function, etc. 

2.3. Multi-output Gaussian process regression 

For multi-output tasks, ordinary GPR can only model each output 
separately and cannot consider the correlation between the outputs. 
Some scholars consider using the correlation between outputs to 
establish a multi-output Gaussian process (MOGP) model to improve the 
prediction accuracy [30]. Here is a brief introduction to MOGP. 

For training points X = {x1,⋯, xn}
T, there are D-dimensional output 

Y = (y1,⋯, yD)
T. Function f(x) are assumed to follow GP as f(x) GP(0,

K(x,x’)), and the covariance function is 

K(x, x’) =

⎡

⎣
k11(x, x’)⋯k1D(x, x’)

⋮⋱⋮
kD1(x, x’)⋯kDD(x, x’)

⎤

⎦ ∈ RD×D (7) 

The joint distribution of multiple outputs can be written as 
[

Y
f *

]
̃ MN

(

0,

[
K(X,X) + σ2

nI K(X,X*)

K(X*,X) K(X*,X*)

])

(8) 

where K(X,X) ∈ RnD×nD is the covariance matrix. 
Given the training set X and the output observations Y, the posterior 

distribution of the tested output function is: f *|X,Y, x*~N (f *, cov(f *)). 
The prediction mean and prediction variance are given as 

f * = K(X*,X)
[
K(X,X) + σ2

nI
]− 1Y (9)  

cov(f *) = K(X*,X*) − K(X*,X)
[
K(X,X) + σ2

nI
]− 1K(X,X*) (10)  

Fig. 3. Flowchart of the proposed method.  
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3. The proposed method 

3.1. Model description 

In this paper, the S-MOGP method based on spherical mapping and 
MOGP is proposed to model the 3D surface. In the proposed method, 
firstly, the 3D surface is parameterized through spherical mapping. 
Secondly, the surface shape is modeled via MOGP. Lastly, the T2 and Q 
statistics are calculated to monitor the geometrical deviation of the 3D 
Surface. The main steps of this method are shown diagrammatically in 
Fig. 3. 

There are three steps in the proposed method: 

Step 1: Spherical mapping. First, position alignment is performed for 
the coordinate (mx,my,mz) of the measuring points on the surface. 
Then, parameterize the surface via spherical mapping. The coordi-
nate value can be represented by two parameters: elevation (u) and 
azimuth (v). The center of the fitted ball is taken as the origin. 
Step 2: Fitting MOGP model. Assuming the parametric surface S(u, v)
on R2 obeys the Gaussian distribution, and output function is a 
multivariate GP. The joint distribution of the training observation 
value and the predicted target can be obtained via Bayesian formula. 
Based on MOGP, the 3D surface is modeled and the model parame-
ters are estimated. 
Step 3: Deviation monitoring. Calculate the distance from the 
measured value to get a set of deviation values, and then the prob-
ability density function (PDF) and simplicial functional principal 
component analysis (SFPCA) are used to summarize the deviation. 
The T2 and Q control charts are established to monitor the geomet-
rical deviation. 

3.2. Multi-output Gaussian processes model 

As for each measured coordinate in m = (mx, my, mz)⊂R3, a trans-
formation f : R3→S2 is established after spherical mapping. Therefore, a 
surface embedded in 3D space can be described by two parameters (u,v). 
The distance between two points is not expressed by Euclid distance but 
by angle value. 

Parameterize the measuring point (mx,my,mz) on the spherical sur-
face. Each point is represented by two parameters: 

m(w) =

⎧
⎨

⎩

mx = x(u, v)
my = y(u, v)
mz = z(u, v)

, w = (u, v)⊂S2 (11) 

Establish the surface parameter equation: the input set is 
w = {ui, vi}

n
i=1, that is, the measurement point corresponds to the 

parameter value through spherical mapping; the output set is the 
measured value of three coordinates m = {mxi ,myi ,mzi}

n
i=1, where n is the 

number of measuring points. The proposed model includes three terms: 
the mean (the fixed effect), deviation (the correlation effect), and noise 
(the random effect), given by 

m(w) = μ(w)Tβ+ f(w)+ ε (12) 

where μ(w) = diag(μx(w), μy(w), μz(w)) is a block diagonal matrix 
with blocks of {μx = cosucosv,μy = cosusinv,μz = sinu}, β = [β1, β2, β3]

T is 
a coefficient vector, f(w) is a multivariate random field which assumed 
to follow MOGP, and ε follows a normal distribution N(0,σ2I). 

In order to solve this model, it is needed to discuss the covariance 
structure. On the one hand, not all kernel functions are valid on the 
sphere. A random process is stationary on the sphere if its covariance 
function depends solely on the spherical angle. Huang et al. [35] dis-
cussed the validity of covariance functions on the sphere under different 
models based on the spherical angle distance. On the other hand, large 
spatial data set face tremendous computational challenges. A compactly 
supported function is identically zero outside a finite range, which can 

form a sparse covariance matrix to facilitate the calculation of large- 
scale data. 

Therefore, a non-separable covariance is constructed combining the 
spherical covariance function and compactly supported function. 

For two points w1(u1, v1) and w2(u2, v2) on Sd, their spatial lag 
distance is the spherical distance between w1 and w2 on the largest circle 
on Sd; more precisely, in our model, w = (u,v), i.e., d = 2, the distance is 

θ(w1,w2) = arccos{sinu1sinu2 + cosu1cosu2cos(v1 − v2)} (13) 

Then consider a covariance model with a compactly supported 
structure and discuss its effectiveness on sphere. A non-separable 
covariance based on compact supported structure can be derived by 
convolution approach according to Du et al. [36] Theorem 3, 

Cij(x) =

⎧
⎨

⎩

∫ 1

0
(u − ‖x‖)ν

+gij(u)du, ‖x‖ ≤ 1,

0, ‖x‖ > 1, x ∈ Rd,

i, j = 1,⋯,m (14) 

where g(x) is taken as the indicator function of a compact set in Rd, 
and the function gij(x) is continuous on [0,1]. 

When d ≥ 2, Du et al. [36] give an m-variate elliptically contoured 
random field with direct and cross covariances in Theorem 4, and then 
Ma et al. [37] proved the validity of the covariance on spherical Sd. In 
our model, d = 2, the direct and cross covariances can be deduced as 

Cii(θ) =

⎧
⎨

⎩

2α2
i arccos(τi(θ) ) − 2α2

i τi(θ)
(
1 − τ2

i (θ)
)1

2, θ ≤ 2αi

0, θ > 2αi

(15)  

Cij(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πmin
{

α2
i ,α2

j

}
, θ ≤

⃒
⃒αi − αj

⃒
⃒

α2
i arccos(τi(θ) ) − α2

i τi(θ)
(
1 − τ2

i (θ)
)1

2

+α2
j arccos

(
τj(θ)

)
− α2

j τj(θ)
(

1 − τ2
j (θ)

)1
2
,
⃒
⃒αi − αj

⃒
⃒
〈
θ ≤ αi + αj

0, θ > αi + αj

(16) 

where τi(θ) = (α2
i − α2

j + θ2)/(2αiθ) and τj(θ) = (α2
j − α2

i +

θ2)/(2αjθ), i ∕= j, i, j = 1,2,3.
Considering λ = {β, α, σ} as the set of hyper-parameters in the pro-

posed model, the log-likelihood function is. 

L = −
3n
2

log(2π) − 1
2

log
⃒
⃒C+ σ2I

⃒
⃒ −

1
2
(m − μβ)T( C + σ2I

)− 1
(m − μβ)

(17) 

By solving the hyperparameters, the 3D surface can be modeled from 
the measurement points. 

3.3. Surface monitoring 

In non-contact measurement, the dense point cloud data is usually 
high-dimensional, which makes it difficult to use ordinary control charts 
directly. In this method, the 3D surface is monitored by the deviation 
between the measured surface and the predicted value calculated by the 
S-MOGP model. In order to compare this geometric difference, it is 
necessary to establish an appropriate summary of the deviation values. 
Sample statistics (mean and variance) can be expressed, but will lead to 
the loss of a lot of information. Menafoglio et al. [38] proposed the 
method of summarizing the probability density function (PDF) of devi-
ation values, which can strike a balance between retaining information 
and simplifying the deviation. Following this approach, the deviation 
values of 3D surfaces are summarized based on the PDF and principal 
component analysis (PCA) methods, and are monitored by the T2 and Q 
control charts. 

The S-MOGP model is established according to a nominal sample. For 
the j th measurement sample (j = 1, ⋯, M), the deviation value of a 
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measurement sample is calculated by 

dij =
⃦
⃦mij − ẑij

⃦
⃦ (18) 

where ẑij is the prediction value, mi is the true coordinates,i = 1, ...,
Nj, and Nj is the number of measurement points of the j th sample. 

Referring to the method proposed by Scimone et al. [39], PDF can be 
estimated from the Bernstein polynomial estimator. The PDF f̂ j esti-
mator based on empirical cumulative distribution function (CDF) Fj is 
given by 

f̂ j(x) = Nj

∑Nj − 1

k=0

[(

Fj

(
k + 1

Nj

)

− Fj

(
k
Nj

))

bk,Nj (x)
]

(19) 

where Nj is the number points in the point cloud, bk,Nj is the k th 

Bernstein polynomial, bk,Nj (x) = Njkxk(1 − x)Nj − k, and x is the variable 
transformation on a compact domain [0, 1]. 

Then, the simplicial functional principal component analysis 
(SFPCA) is performed to obtain the eigenvalues-eigenfunction (λi, ζi) of 
the sample covariance operator, and its scores along with the i th prin-
cipal component as 

Sij =
〈

f̂ j − f̂ , ζi
〉

(20) 

where f̂ = 1
M
∑M

j=1 f̂ j is the sample mean. 
Select a number K ∈ {1, ...,N} of principal components which 

explain 98% of the total variability of the dataset. Considering two 
different statistics: T2 statistic to identify anomalies in the K retained 
components and Q statistic to identify the prediction error. The statistics 
are calculated by 

T2
j =

∑K

i=1

(
Sij
)2

λi
(21)  

Q =
〈

f̂
*
j − f̂ j, f̂

*
j − f̂ j

〉
(22) 

where f̂
*
j =

∑K
i=1zijζi is the reconstruction of the j th density curve 

which retaining the first K principal components. 
Two multivariate control charts are performed to monitor the T2 and 

Q statistics. The upper control limits of T2 and Q statistics are 

UCLα
(
T2) =

(N − 1)2

N
q

Beta
(

1− α,K2 ,(N− k− 1)/2
) (23) 

where qBeta denotes the quantile of the Beta distribution and α is the 
Type I error probability. 

UCLα(Q) = θ1

⎧
⎨

⎩
1 − θ2h0

(
1 − h0

θ2
1

)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

zα
(
2θ2h2

0

)√

θ1

⎫
⎬

⎭

1
h0

(24) 

where zα is the (1 − α) quantile of the standard normal distribution, 
h0 = 1 −

(2θ1θ3)

3θ2
2

, θr =
∑∞

j=K+1λr
j , r = 1,2,3. 

With the above steps, the deviation between the measured sample 
and the nominal surface model can be monitored by the Hotelling T2 and 
Q control charts. 

4. Simulation 

4.1. Simulation surface prediction 

In this section, three simulation surfaces with different shapes are 
generated to evaluate the surface modeling performance of the proposed 
method. The points on each surface are divided into training points and 
test points. The parameter model of the 3D surface is established 
through the training points and then the surface is predicted at the test 
points. To evaluate the performance of the model, the deviation of the 

predicted value from the true value is calculated by the mean square 
error (MSE): 

MSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1|ẑi − mi|
2

n

√

(25) 

where ẑi is the prediction value, mi is the true coordinates, n is the 
number of prediction points, and | • | denotes Euclidean distance. 

In the ordinary GP model, the x and y coordinates of the measure-
ment point are regarded as the interpretation variables, and the z co-
ordinate is regarded as the response variable. Castillo et al. [25] 
replaced the Euclidean distance in the GP kernel function with the 
geodesic distance to model 3D surfaces, which can more accurately 
represent the correlation between the two points. In the simulation of 
surface prediction, the ordinary GP method, Geodesic Gaussian Pro-
cesses (GGP) method [25] and GPLVM method [26] are used for method 
comparison. Three different surface forms including a sphere with four 
holes, a deformed cylinder, and a sinusoidal surface, shown in Fig. 4, are 
simulated for comparison.  

1. Sphere with holes. A sphere with a radius of R = 1 and four holes is 
simulated to explore the modeling ability of the method on the sur-
face with holes.  

2. Deformed cylinder. A cylinder defined by a profile function: 
2+α × cos(u) is simulated to explore the modeling ability of the 
method on the semi-closed surface, where α is the form factor and 
α = 1 in the normal condition.  

3. Sinusoidal surface. A sinusoidal surface defined by a profile function: 
β × sin(u) is simulated to explore the modeling ability of the method 
on the non-closed and deployable surface, where β is the form factor 
and β = 1 in the normal condition. 

For each simulation surface, error term with a mean value is 0 and 
variance is σ2(σ2 = 0.01,0.05,0.1) in x, y, and z directions. Simulate 50 
times for each situation and calculate the mean of MSE. In each situa-
tion, 400 points on the surface are generated, where 300 points are 
randomly selected as fitting points and the remaining 100 points are 
selected as prediction points. Table 1 shows the performance of a series 
of simulations of the four methods. 

As shown in Table 1, for sphere with holes and deformed cylinder 
surfaces, the proposed method has the best prediction value. These two 
surfaces can be regarded as the deformation of an ordinary sphere. 
Therefore, compared with other methods, the proposed method can 
reflect the correlation between two points more exactly and can get the 
best prediction results. For the sinusoidal surface, the effect of S-MOGP 
is not as good as GGP and GPLVM methods. Because the GGP and 
GPLVM methods expand the sinusoidal surface into a plane, for 
deployable surfaces, planar mapping has less distortion. For sinusoidal 
surface, the spherical mapping method has great distortion. However, 
the proposed method is still better than the ordinary GP model. 

According to the simulation results of three different types of sur-
faces, the proposed method has great advantages on closed and semi- 
closed surfaces, and the method is less affected by the noise. When the 
noise is large, it can still be closer to the true surface. 

4.2. Simulation surface monitoring 

The same surface model is used in the exact way as in the subsection 
4.1 to monitor the geometrical deviations of surfaces. The control result 
is evaluated by the Average Run Length (ARL) value. The smaller the 
ARL value, the more sensitive the control chart is to abnormal changes 
and the better the method. To further assess the performance of the 
proposed method, the Q-Q plot method is used for comparison. 

A Q-Q plot can test if two sets of data come from the same distri-
bution. It plots the expected value of the specified distribution for each 
quantile in the sample data. If the resulting graph is linear, the sample 
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data is from the specified distribution. Wells et al. [19] compared the 
monitoring parameters of the Q-Q plot, including the intercept, slope, 
and two types of residual values. They concluded that in most cases, 
monitoring intercept and slope can provide the best monitoring results. 
Therefore, in this simulation, the intercept and slope of the Q-Q plot is 
monitored for method comparison. 

To monitor the shape changes and noise changes of the simulated 
surface, for each simulation surface, simulating 500 samples for the 
normal process (phase I) to calculate the controlling parameters and the 
UCL. Assume type I error α = 0.005. In Phase II, simulate the abnormal 
process 100 times (500 samples for each time) and calculate the mean 
and standard deviation of ARL under each method. 

For the three simulation surfaces, assuming the form factor R = 1, 
α = 1, β = 1 and noise factor σ2 = 0.01 are the normal conditions, the 
proposed method and the Q-Q plot method are performed to compare 
the ARLs in Phase II. The simulation results are shown in Fig. 5. 

Fig. 5 shows the ARLs of the proposed method and Q-Q plot method 
under different conditions. The proposed method has a better moni-
toring result than the Q-Q plot. This monitoring method can analyze the 
profile shape of the deviations, and the effect is better than the moni-
toring of the slope and intercept of the Q-Q plot. 

This method can effectively and comprehensively reflect the infor-
mation of the 3D surface. Compared with the Q-Q plot method, this 
method has a better monitoring effect and can identify abnormal in-
formation in the process more quickly. 

5. Case study 

The combustion chamber of the engine cylinder head is a complex 3D 
surface. If the surface of the combustion chamber has defects, it will 
affect the volume of the combustion chamber, which in turn affects the 
performance of the engine. Therefore, the research on the surface 
quality of the combustion chamber is very important. 

The traditional method is based on the three-coordinate 

measurement. The measurement area and number of points are selected 
artificially. It is difficult to express the overall contour of the combustion 
chamber surface. Due to the long measurement time, the interval mea-
surement is used in this method, which is easy to miss the deviation in 
the batch. 

The advanced HDM technology has fast measurement speed and the 
high-density point cloud data obtained by HDM can reflect the entire 
contour of the surface. Fig. 6 shows the measurement process of the 
HDM on the combustion chamber of the cylinder head. The cylinder 
head combustion chamber is scanned by line laser. Fig. 7 shows the 
measured point cloud data. In this experiment, the cylinder heads of 
eight B12 series engines in an automobile processing plant are 
measured. There are four combustion chambers on each cylinder head 
and a total of 32 combustion chambers are measured. Among them, due 
to mold wear, the cylinder head of the last engine was deformed. The 
proposed method is used to model and monitor these chambers. 

The measurement results show that the combustion chamber is an 
approximately hemispherical structure with holes. Perform spherical 
mapping for each chamber point cloud, represented by (u, v). 

First, explore the influence of the number of fitting points on the 

Fig. 4. Three simulated surfaces.  

Table 1 
Prediction results for three simulation surfaces.  

shape σ2 MSE 
(S- 
MOGP) 

MSE 
(GP) 

MSE 
(GGP) 

MSE 
(GPLVM) 

Sphere with holes  0.01  0.0130  0.6732  0.4417  0.5466  
0.05  0.0438  0.7035  0.6733  0.6670  
0.1  0.0803  0.7321  0.7485  0.7044 

Deformed 
cylinder  

0.01  0.0241  0.5997  0.5443  0.4284  
0.05  0.0677  0.7479  0.7229  0.6400  
0.1  0.1032  0.7825  0.7383  0.7296 

Sinusoidal surface  0.01  0.0332  0.1224  0.0089  0.0274  
0.05  0.0741  0.1932  0.0312  0.0707  
0.1  0.1439  0.2130  0.0674  0.1365  

Fig. 5. ARLs and 95% confidence intervals in simulated surfaces 1, 2, 3 for S- 
MOGP and Q-Q plot methods. 
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quality of the model. The original dataset consists of 9094 points from a 
combustion chamber (see Fig. 7(b)). Randomly select 500, 1500, 3500, 
8000 points as fitting points (nfit), and choose 1000 points as prediction 
points. 

In the proposed method, the covariance with compactly supported 
structure can support the calculation of large-scale data. For the 
compared method GGP, Castillo et al. [25] used sparse matrix tech-
niques to handle the inverse and determinant operations. The same 
method is applied to GPLVM model to compare the fitting effect of the 
model under large-scale measurement points. 

Table 2 shows the MSE values of the three methods with different 
numbers of fitting points. 

Comparing the proposed method S-MOGP with GP, GGP and GPLVM 
methods, the proposed method has the best prediction results. More-
over, for the surface with holes, the geodesic distance calculated by GGP 
has a large deformation from the true value, and the prediction result is 
not as good as the standard Euclidean GP model. The effect of the 
GPLVM model is between the GP and GGP. For this case, the spatial 
correlations are better modeled by spherical space rather than in 
geodesic space and Euclidean space. 

Then monitoring the inner surfaces of the 32 combustion chambers. 
Among them, the 29th-32th cylinder head combustion chambers are 
defective products due to wear. 

Taking the first 16 combustion chambers as phase I, and then the T2 

and Q control charts are established to monitor the next 16 combustion 
chambers, as shown in Fig. 8. The last four cavity surfaces have 

geometric deviations due to wear, which can be identified by the pro-
posed method. 

Last, the Q-Q plot is implemented for comparison. In the Q-Q plot 
method, each measured combustion chamber is compared with the first 
qualified sample to generate a Q-Q plot. The slope and intercept of the Q- 
Q plot are monitored by the Shewhart control chart. Fig. 9 shows the 
control chart of the Q-Q plot method. Fig. 9(a) shows the slope value of 
the Q-Q plot. A slope value closer to 1 indicates a smaller deviation 
between the sample and the qualified sample, so the slope control chart 
only indicates the lower control limit. Fig. 9(b) shows the intercept value 
of the Q-Q plot. The red lines are control limits. In this case, the last 4 
samples are unqualified samples but only one unqualified sample is 
identified. 

The experimental results show that compared with the GP, GGP and 
GPLVM method, the proposed method has the best fitting effect in this 
case, and can effectively model the inner surface of the engine cylinder 
head chamber. In this case, although the inner surface of the chamber is 
a non-closed surface, it is approximately hemispherical, and its spherical 
mapping has less distortion, so it is suitable to the proposed method. In 
the monitoring, the proposed method can effectively identify surface 
changes, which can quickly adjust the processing process to ensure 
product quality. The effectiveness of the method in practical application 
is verified by the fitting error and the monitoring process. 

6. Conclusions 

This paper proposes an S-MOGP method based on spherical mapping 
and MOGP to model and monitor 3D surfaces. This method converts 3D 
coordinate values into spherical parameters through spherical mapping, 
establishes a state equation based on MOGP, and provides a control 
chart to monitor the geometrical deviations. The spherical distance is 
used to replace the Euclidean distance and geodesic distance. The 
effectiveness of this method for 3D surface modeling and monitoring is 
verified through simulations and an actual case. 

Compared with the GP, GGP and GPLVM methods, the proposed 

Fig. 6. The measurement process of a cylinder head.  

Fig. 7. Measured point cloud data.  

Table 2 
The MSE of three methods.  

nfit MSE(S-MOGP) MSE(GP) MSE(GGP) MSE(GPLVM) 

500  0.1007  0.3820  0.5168  0.3977 
1500  0.0632  0.1284  0.3570  0.1446 
3500  0.0619  0.1445  0.3696  0.1218 
8000  0.0501  0.1109  0.3143  0.1169  
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method has the smallest prediction error on closed and semi-closed 
surfaces. In the actual case, the prediction accuracy of the proposed 
method is significantly increased. The proposed method comprehen-
sively considers the spatial correlation in the three directions of x, y, and 
z. For spherical and multi-hole surfaces, the proposed method is not 
affected by the spatial distance between two points but only depends on 
the angle value, which can better model the 3D surface. 

In surface monitoring, the proposed method can quickly identify 
abnormal conditions in the process. Compared with the Q-Q plot 
method, the proposed method can effectively identify surface changes 
and provide feedback information for the part processing process to 
ensure product quality. 

In conclusion, this paper proposes an S-MOGP method for modeling 
and monitoring 3D surfaces. Compared with the existing methods, the 
proposed method has significant advantages on non-developable sur-
faces, especially on closed and multi-hole surfaces. Combined with the 
HDM technology, this method can be used in the processing of point 
cloud data on 3D surfaces. There are several possible directions for 
future research.  

(1) At present, only offline data is used for analysis. This method can 
be combined with online HDM rapid measurement to realize real- 

time monitoring of 3D surfaces and reflect the online processing 
information.  

(2) This method can monitor the change of surface shape, but it 
cannot identify the specific defect location. By combining image 
data and other processing methods, this method can be further 
explored to identify the location of surface defects. 
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Appendix A 

The specific process of spherical mapping.  

1. Approximate the Laplace-Beltrami (LB) operator Δ on point cloud P = {z1, z2,⋯, zn}. Consider the approximation on the patch N(zs) of a point 
zs ∈ P. For any function u defined on the neighborhood N(z), it can be approximated by a combination of a set of basic function {f1

s , f2
s ,⋯, fm

s }: 

u = fs(x, y) ≈
∑m

i=1
ĉif i

s (x, y) (a1) 

Let m = 6, {1, x, y, x2, xy, y2} are the basis of the space of all polynomials with second order or below. The coefficients ĉi can be approximated by 
the least square method. Since the LB operator is a second order differential operator, the LB operator of u is given by 

Δu(zs) = α1
∂u
∂x

(zs)+α2
∂u
∂y

(zs)+ α3
∂2u
∂x2 (zs)+α4

∂2u
∂x∂y

(zs)+α5
∂2u
∂y2 (zs) (a2) 

where αi, i = 1,⋯,5, are coefficients which depend on partial derivatives of fs.  

2. Spherical conformal parameterization. Let ΔPC represent the approximate LB operator on the point cloud. A conformal map ϕ : P→C is established 
if 

ΔPCϕ = 0 (a3) 

where ϕ(ai) = bi for i = 1,2,3, and ai,bi ∈ C. The a1, a2, a3 are the three boundary points that are the regularity of a triangle of zs. 
The formula (4) is solved by boundary constraints. The spherical point cloud can be obtained by inverse stereographic projection P− 1

N on.ϕ(P)

3. Correct the conformality distortion. First perform South Pole stereographic projection PS, the spherical point cloud is projected back to the complex 
plane. The boundary constraints are updated with the outermost low-distortion data and are used to solve the Laplace equation ψ : (PS

◦P− 1
N ◦ϕ)(P)→ 

C by 

ΔPCψ = 0 (a4) 

Also, inverse stereographic projection P− 1
S is applied to obtain a composition map 

f̃ = P− 1
S ◦ψ◦PS

◦P− 1
N ◦ϕ (a5) 

According to (4) and (5), a conformal map ̃f : P→S2 can be obtained. 

4. Enhance parametric results through iteration. In each reiteration, perform the north-pole stereographic projection PN, the spherical data is pro-
jected onto the complex plane and a harmonic map ϕ̃ : (PN

◦ f̃ )(P)→C is solved by 

ΔPCϕ̃ = 0 (a6) 

After obtaining ϕ̃, the inverse north-pole stereographic projection is employed again, and then the south-pole stereographic projection is 
employed. The corresponding harmonic map ψ̃ : (PS

◦P− 1
N ◦ϕ̃

◦
PN

◦ f̃ )(P)→C is solved by 

ΔPCψ̃ = 0 (a7) 

The new spherical parameterization is 

P− 1
S ◦ψ̃◦PS

◦P− 1
N ◦ϕ̃

◦
PN

◦ f̃ (a8) 

Compare the updated parameterization result with the previous parameterization result ̃f . If unstable, repeat the process. The scheme algorithm is   

Algorithm: Spherical mapping algorithm 

Input: Point cloud P. 
Output: Spherical mapping parameterization f. 

1. Estimate the LB operator ΔPC on P; 
2. Solve the Laplace equation (3) by boundary constraints and obtain a conformal map ϕ : P→C; 
3. Perform the inverse stereographic projection P− 1

N : C→S2 on ϕ(P); 
4. Perform the south-pole stereographic projection PS : S2→C on (P− 1

N ◦ϕ)(P); 

(continued on next page) 
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(continued ) 

Algorithm: Spherical mapping algorithm 

5. Correct the conformality distortion ψ : (PS
◦P− 1

N ◦ϕ)(P)→C; 
6. Perform the inverse south-pole stereographic projection P− 1

S and obtain a composition map f = P− 1
S ◦ψ◦PS

◦P− 1
N ◦ϕ; 

7. Repeat 
8. Update ̃f by f ; 
9. Perform the north-pole stereographic projection ϕ̃ : (PN

◦ f̃ )(P)→C; 
10. Perform the south-pole stereographic projection ψ̃ : (PS

◦P− 1
N ◦ϕ̃

◦
PN

◦ f̃ )(P)→C; 
11. Update f by P− 1

S ◦ψ̃◦PS
◦P− 1

N ◦ϕ̃
◦
PN

◦ f̃; 
12. until mean(‖f(pi) − f̃(pi)‖

2
) < ∊;  
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